суббота, 13 апреля 2013 г.

Компьютерная томография


Компьютерная томография — это послойное рентгенологическое исследование, основанное на компьютерной реконструкции изображения, получаемого при круговом сканировании объекта (от англ. Scan — бегло просматривать) узким пучком рентгеновского излучения.
Компьютерная томография (К.Т) буквально «взорвала» не только лучевую, но и вообще медицинскую диагностику. Впервые за всю историю развития медицины у врача появилась уникальная возможность изучить у живого человека неинвазивным методом анатомические структуры внутренних органов диаметром всего несколько миллиметров.
Компьютерный томограф представляет собой чрезвычайно сложное устройство, при создании которого были использованы наиболее прогрессивные компьютерные, электронные и механические технологии (рис. 7).
Рис. 7. Рентгеновский компьютерный томограф.


Схема получения компьютерных томограмм представлена на рис. 8.

Рис.8 Принцип компьютерной томографии.


Узкий пучок рентгеновского излучения сканирует человеческое тело по окружности. Проходя через ткани, излучение ослабляется соответственно плотности и атомному составу этих тканей. По другую сторону от пациента установлена круговая система датчиков рентгеновского излучения, каждый из которых (а их количество может достигать нескольких тысяч) преобразует энергию излучения в электрические сигналы. После усиления эти сигналы преобразуются в цифровой код, который поступает в память компьютера. Зафиксированные сигналы отражают степень ослабления пучка рентгеновских лучей (и, следовательно, степень поглощения излучения) в каком-либо одном направлении.
Вращаясь вокруг пациента, рентгеновский излучатель «просматривает» его тело в разных ракурсах, в общей сложности под углом 360°. К концу вращения излучателя в памяти компьютера оказываются зафиксированными все сигналы от всех датчиков. Продолжительность вращения излучателя в современных томографах очень небольшая, всего 1—3 с, что позволяет изучать движущиеся объекты.
При использовании стандартных программ компьютер реконструирует внутреннюю структуру объекта. В результате этого получается изображение тонкого слоя изучаемого органа, обычно порядка нескольких миллиметров, которое выводится на дисплей, и врач обрабатывает его применительно к поставленной перед ним задаче: может масштабировать изображение (увеличивать и уменьшать), выделять интересующие его области (зоны интереса), определять размеры органа, число или характер патологических образований (рис. 9).

Рис. 9. Компьютерная томограмма брюшной полости. Метастазы злокачественной опухоли в печени (указаны стрелками).

Попутно определяют плотность ткани на отдельных участках, которую измеряют в условных единицах — единицах Хаунсфилда (HU). За нулевую отметку принята плотность воды. Плотность кости составляет +1000 HU, плотность воздуха равна -1000 HU. Все остальные ткани человеческого тела занимают промежуточное положение (обычно от 0 до 200—300 HU).
Естественно, такой диапазон плотностей отобразить ни на дисплее, ни на фотопленке нельзя, поэтому врач выбирает ограниченный диапазон на шкале Хаунсфилда — «окно», размеры которого обычно не превышают нескольких десятков единиц Хаунсфилда. Параметры окна (ширина и расположение на всей шкале Хаунсфилда) всегда обозначают на компьютерных томограммах. После такой обработки изображение помещают в долговременную память компьютера или сбрасывают на твердый носитель — фотопленку. Добавим, что при компьютерной томографии выявляются самые незначительные перепады плотности, около 0,4—0,5 %, тогда как обычная рентгенограмма может отобразить плотностной градиент только в 15—20 %.
Обычно при компьютерной томографии не ограничиваются получением одного слоя. Для уверенного распознавания поражения необходимо несколько срезов, как правило, 5—10, их выполняют на расстоянии 5—10 мм друг от друга. Для ориентации в расположении выделяемых слоев относительно тела человека на этом же аппарате производят обзорный цифровой снимок изучаемой области — рентгенотопограмму, на которой и отображаются выделяемые при дальнейшем исследовании уровни томограмм.
В настоящее время сконструированы компьютерные томографы, в которых в качестве источника проникающего излучения вместо рентгеновского излучателя используют вакуумные электронные пушки, испускающие пучок быстрых электронов. Сфера применения таких электронно-лучевых компьютерных томографов пока ограничена в основном кардиологией.
В последние годы бурно развивается так называемая спиральная томография, при которой излучатель движется по спирали по отношению к телу пациента и захватывает, таким образом, за короткий промежуток времени, измеряемый несколькими секундами, определенный объем тела, который в последующем может быть представлен отдельными дискретными слоями.
Спиральная томография инициировала создание новых, чрезвычайно перспективных способов визуализации — компьютерной ангиографии (рис. 10),

Рис. 10. Спиральная компьютерная томограмма (ангиограмма).
А – расширенная брюшная аорта. Стрелками показаны почечные артерии.
К левой почке идет добавочная артерия (указана изогнутой стрелкой).

трехмерного (объемного) изображения органов (рис. 11) и, наконец, так называемой

Рис. 11. Компьютерная томограмма поясничных позвонков (трехмерная реконструкция изображения).

виртуальной эндоскопии (рис. 12; 13), которая стала венцом современной медицинской визуализации.

Рис. 12. Компьютерная томограмма (виртуальная эндоскопия). Наружный вид трахеи, бронхов и увеличенных лимфатических узлов.

 Рис. 13. Компьютерная томограмма (виртуальная эндоскопия, выполненная у того же больного – см. рис. 12). Изображение бифуркации трахеи. Эндобронхиальный рак правого главного бронха.


Для более четкого дифференцирования желудка и кишечника при КТ брюшной полости их контрастируют путем дробного приема внутрь пациентом до исследования около
500 мл 2,5 % раствора водорастворимого йодистого контрастного вещества.
Разработана дополнительная методика выполнения КТ — усиленная КТ (рис. 14).

Рис. 14. Методика «усиления» при компьютерной томографии,
а – томограмма брюшной полости до введения контрастного вещества;
б – после внутривенного введения рентгеноконтрастного вещества: усиление тени аорты, сосудов и почек. 


Она заключается в проведении томографии после внутривенного введения больному водорастворимого контрастного вещества. Этот прием способствует увеличению поглощения рентгеновского излучения в связи с появлением контрастного раствора в сосудистой системе и паренхиме органа. При этом, с одной стороны, повышается
контрастность изображения, а с другой - выделяются сильно васкуляризованные образования, например сосудистые опухоли, метастазы некоторых опухолей. Естественно, на фоне усиленного теневого изображения паренхимы органа в ней лучше выявляются малососудистые или вовсе бессосудистые зоны (кисты, опухоли).
Некоторые модели компьютерных томографов снабжены кардиосинхронизаторами. Они включают излучатель в точно заданные моменты времени—в систолу и диастолу. Полученные в результате такого исследования поперечные срезы сердца позволяют визуально оценить состояние сердца в систолу и диастолу, провести расчет объема камер сердца и фракции выброса, проанализировать показатели общей и регионарной сократительной функции миокарда.
Значение КТ не ограничивается ее использованием в диагностике заболеваний. КТ является точным методом определения локализации имплантантов, чипов и других инородных тел.

Литература:
Линденбратен Л.Д., Королюк И.П. Медицинская радиология (основы лучевой диагностики и лучевой терапии): Учебник. — 2-е изд., перераб. и доп. —
М.: Медицина, 2000.— 672 с: ил. (Учеб. лит. Для студентов мед. вузов).

Комментариев нет:

Отправить комментарий