суббота, 13 апреля 2013 г.

Рентгенография


Рентгенография (рентгеновская съемка) - способ рентгенологического исследования, при котором фиксированное рентгеновское изображение объекта получают на твердом носителе, в подавляющем большинстве случаев на рентгеновской пленке. В цифровых рентгеновских аппаратах это изображение может быть зафиксировано на бумаге, в магнитной или магнитно-оптической памяти, получено на экране дисплея.
Пленочную рентгенографию выполняют либо на универсальном рентгеновском аппарате, либо на специальном штативе, предназначенном только для этого вида исследования. Исследуемая часть тела располагается между рентгеновским излучателем и кассетой. Внутренние стенки кассеты покрыты усиливающими экранами, между которыми и помещается рентгеновская пленка.
Усиливающие экраны содержат люминофор, который под действием рентгеновского излучения светится и, таким образом воздействуя на пленку, усиливает его  фотохимическое действие. Основное назначение усиливающих экранов — уменьшить экспозицию, а значит, и радиационное облучение пациента.
Снимок части тела (голова, таз и др.) или целого органа (легкие, желудок) называют обзорным. Снимки с изображением интересующей врача части органа в проекции, оптимальной для исследования той или иной детали, именуют прицельными. Их нередко производит сам врач под контролем просвечивания. Снимки могут быть одиночными или
серийными. Серия может состоять из 2—3 рентгенограмм, на которых зафиксированы разные состояния органа (например, перистальтика желудка). Однако чаще под серийной рентгенографией понимают изготовление нескольких рентгенограмм в течение одного исследования и обычно за короткий промежуток времени. Например, при артериографии (контрастное исследование сосудов) с помощью специального устройства — сериографа — производят до 6—8 снимков в секунду.
Из вариантов рентгенографии заслуживает упоминания съемка с прямым увеличением изображения, которого обычно достигают, отодвигая рентгеновскую кассету от объекта съемки на 20—30 см. В результате этого на рентгенограмме получается изображение мелких деталей, не различимых на обычных снимках. Для изучения костно-суставной сис-
темы оптимальным считается увеличение в 5—7 раз (рис. 3).
Рис. 3. Рентгенограмма костей запястья с увеличением изображения.

* По существующим правилам все рентгенограммы в тексте воспроизводятся
в позитивном отображении, идентичном изображению на флюоресцентном экране.


На рентгенограммах можно получить изображение любой части тела. Некоторые органы хорошо различимы на снимках благодаря естественной контрастности (кости, сердце, легкие). Другие органы достаточно четко отображаются только после их искусственного контрастирования (бронхи, сосуды, желчные протоки, полости сердца, желудок, кишечник). В любом случае рентгенологическая картина формируется из светлых и темных участков.
Следует помнить, что рентгеновский снимок является негативом по отношению к изображению, видимому на флюоресцентном экране при просвечивании, поэтому прозрачные для рентгеновских лучей участки тела на рентгенограммах получаются темными («затемнения»), а более плотные — светлыми («просветления»). Однако главная особенность рентгенограммы заключается в другом. Каждый луч при прохождении через тело человека пересекает не одну точку, а огромное количество точек, расположенных как на поверхности, так и в глубине тканей. Следовательно, каждой точке на снимке соответствует множество действительных точек объекта, которые проецируются друг на друга, поэтому рентгеновское изображение является суммационным, плоскостным. На рис. 4 показано, что это обстоятельство приводит к потере изображения многих элементов объекта, поскольку изображение одних деталей накладывается на тень других.
Рис. 4. Различные виды суммации (1-3) и вычитания (4) теней на рентгенограмме.

Из этого вытекает основное правило рентгенологического исследования: рентгенограммы любой части тела (органа) должны быть произведены как минимум в двух взаимно
перпендикулярных проекциях — прямой и боковой. В дополнение к ним могут понадобиться снимки в косых и аксиальных (осевых) проекциях.
При правильном выборе технических условий на снимке отображаются мелкие анатомические детали. Рентгенограмма является документом, который можно хранить продолжительное время, использовать для сопоставления с повторными рентгенограммами и предъявлять для обсуждения неограниченному числу специалистов.

Прогресс компьютерной техники открыл возможность разработки дигитальных (цифровых) способов получения рентгеновского изображения (от англ. digit — цифра). Для этих способов характерно представление рентгеновского изображения в цифровом варианте. Такие изображения формируются с помощью различных устройств. Соответственно различают следующие системы цифровой рентгенографии: 1) электронно-оптическая цифровая рентгенография; 2) сканирующая цифровая рентгенография; 3) цифровая люминесцентная рентгенография; 4) цифровая селеновая или силиконовая рентгенография (прямая цифровая рентгенография).
При электронно-оптической цифровой рентгенографии рентгеновское изображение, полученное в телевизионной камере, после усиления поступает на аналого-цифровой преобразователь (рис. 5).
Рис. 5. Электронно-оптическая цифровая система для рентгенографии и рентгеноскопии.

Все электрические сигналы, несущие информацию об исследуемом объекте, превращаются в череду цифр. Иными словами, создается цифровой образ объекта. Цифровая информация поступает затем в компьютер, где обрабатывается по заранее составленным программам. Программу выбирает врач, исходя из задач исследования. С помощью компьютера можно улучшить качество изображения, повысить его контрастность, очистить от помех, выделить интересующие врача детали или контуры.
В системах, в которых использована техника сканирования объекта, через него пропускают движущийся узкий пучок рентгеновских лучей, т.е. последовательно «просвечивают» все его отделы. Прошедшее через объект излучение регистрируется детектором и преобразуется в электрический сигнал, который после оцифровки в аналого-цифровом преобразователе передается на компьютер для последующей обработки.
Быстро развивается цифровая люминесцентная рентгенография, при которой пространственный рентгеновский образ воспринимается «запоминающей» люминесцентной пластиной, способной сохранять скрытое в ней изображение в течение нескольких минут. Затем эта пластина сканируется специальным лазерным устройством, а возникающий при этом световой поток преобразуется в цифровой сигнал.
Особенно привлекает внимание прямая цифровая рентгенография, основанная на прямом преобразовании энергии рентгеновских фотонов в свободные электроны. Подобная трансформация происходит при действии рентгеновского пучка, прошедшего через объект, на пластины из аморфного селена или аморфного полукристаллического силикона. По ряду соображений такой метод рентгенографии пока используют только для исследования грудной клетки.
Независимо от вида цифровой рентгенографии окончательное изображение при ней сохраняется на различного рода магнитных носителях (дискеты, жесткие диски, магнитные ленты) либо в виде твердой копии (воспроизводится с помощью мультиформатной камеры на специальной фотопленке), либо с помощью лазерного принтера на писчей бумаге.
К достоинствам цифровой рентгенографии относятся высокое качество изображения, пониженная лучевая нагрузка и возможность сохранять изображения на магнитных носителях.
В заключении отметим, что существует еще один вид рентгенологического исследования – флюорография. Флюорография — метод рентгенологического исследования, заключаю-
щийся в фотографировании изображения с флюоресцентного рентгеновского экрана (что применяется чаще), экрана электронно-оптического преобразователя или систем, предназначенных для последующей оцифровки изображений, на фотопленку небольшого формата — обычно 110x110 мм, 100*100 мм или, что менее желательно, 70 χ 70 мм.
Место флюорографии в рентгенодиагностике - проведение с ее помощью массовых проверочных (профилактических) исследований. Для нашей задачи – поиска инородных тел этот вид рентгенологического исследования интереса не представляет.


Литература:
Линденбратен Л.Д., Королюк И.П. Медицинская радиология (основы лучевой диагностики и лучевой терапии): Учебник. — 2-е изд., перераб. и доп. —
М.: Медицина, 2000.— 672 с: ил. (Учеб. лит. Для студентов мед. вузов).




Комментариев нет:

Отправить комментарий